Advertisements
Advertisements
प्रश्न
If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.
उत्तर
If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = `underlinebb(barz_1)`.
Explanation:
Let z1 = x1 + iy1 and z2 = x2 + iy2
z1 + z2 = (x1 + iy2) + (x2 + iy2)
z1 + z2 = (x1 + x2) + (y1 + y2)i
If z1 + z2 is real then,
y1 + y2 = 0
⇒ y1 = –y2
∴ z2 = x2 – iy1
z2 = x1 – iy1 ......(When x1 = x2)
So z2 = `barz_1`
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number:
4 – 3i
Find the multiplicative inverse of the complex number.
–i
Find the value of i49 + i68 + i89 + i110
Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.
Find the value of: x3 – 3x2 + 19x – 20, if x = 1 – 4i
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
Select the correct answer from the given alternatives:
If n is an odd positive integer then the value of 1 + (i)2n + (i)4n + (i)6n is :
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
Evaluate: i131 + i49
Answer the following:
Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i
Answer the following:
Simplify: `("i"^65 + 1/"i"^145)`
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.
State true or false for the following:
The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.
What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?
1 + i2 + i4 + i6 + ... + i2n is ______.
If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
Find `|(1 + i) ((2 + i))/((3 + i))|`.
The value of `(z + 3)(barz + 3)` is equivalent to ______.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.
If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.
Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`
Simplify the following and express in the form a + ib.
`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`