Advertisements
Advertisements
प्रश्न
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
उत्तर
x(1 + 3i) + y(2 − i) − 5 + i3 = 0
∴ x + 3xi + 2y − yi − 5 − i = 0 ...[∵ i3 = − i]
∴ (x + 2y − 5) + (3x − y − 1)i = 0 + 0i
Equating real and imaginary parts, we get
x + 2y − 5 = 0 ...(i)
and 3x − y − 1 = 0 ...(ii)
Equation (i) + equation (ii) × 2 gives
7x − 7 = 0
∴ 7x = 7
∴ x = 1
Putting x = 1 in (i), we get
1 + 2y − 5 = 0
∴ 2y = 4
∴ y = 2
∴ x = 1 and y = 2
∴ x + y = 1 + 2 = 3
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number:
4 – 3i
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.
Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
Simplify the following and express in the form a + ib:
(2 + 3i)(1 – 4i)
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
3 – i
Write the conjugates of the following complex number:
5i
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Write the conjugates of the following complex number:
cosθ + i sinθ
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real
Select the correct answer from the given alternatives:
If n is an odd positive integer then the value of 1 + (i)2n + (i)4n + (i)6n is :
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
Evaluate: i131 + i49
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.
Evaluate: (1 + i)6 + (1 – i)3
If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
What is the reciprocal of `3 + sqrt(7)i`.
Number of solutions of the equation z2 + |z|2 = 0 is ______.
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.
Which of the following is correct for any two complex numbers z1 and z2?
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
`((1 + cosθ + isinθ)/(1 + cosθ - isinθ))^n` = ______.
If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`