Advertisements
Advertisements
Question
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
Solution
x(1 + 3i) + y(2 − i) − 5 + i3 = 0
∴ x + 3xi + 2y − yi − 5 − i = 0 ...[∵ i3 = − i]
∴ (x + 2y − 5) + (3x − y − 1)i = 0 + 0i
Equating real and imaginary parts, we get
x + 2y − 5 = 0 ...(i)
and 3x − y − 1 = 0 ...(ii)
Equation (i) + equation (ii) × 2 gives
7x − 7 = 0
∴ 7x = 7
∴ x = 1
Putting x = 1 in (i), we get
1 + 2y − 5 = 0
∴ 2y = 4
∴ y = 2
∴ x = 1 and y = 2
∴ x + y = 1 + 2 = 3
APPEARS IN
RELATED QUESTIONS
Find the multiplicative inverse of the complex number:
4 – 3i
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
Find the number of non-zero integral solutions of the equation `|1-i|^x = 2^x`.
Simplify the following and express in the form a + ib:
(2i3)2
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Write the conjugates of the following complex number:
`-sqrt(5) - sqrt(7)"i"`
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Answer the following:
If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1
Answer the following:
Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real
If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)
If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.
The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.
State true or false for the following:
The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.
State true or false for the following:
If n is a positive integer, then the value of in + (i)n+1 + (i)n+2 + (i)n+3 is 0.
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
Number of solutions of the equation z2 + |z|2 = 0 is ______.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
The value of `sqrt(-25) xx sqrt(-9)` is ______.
Multiplicative inverse of 1 + i is ______.
State True or False for the following:
Multiplication of a non-zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.
If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.
Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`