Advertisements
Advertisements
Question
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Solution
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
= `(("i" + 2))/"i".((3"i" + 4))/"i". 1/(5 + "i")`
= `(3"i"^2 + 4"i" + 6"i" + 8)/("i"^2(5 + "i"))`
= `(-3 + 10"i" + 8)/(-1(5 + "i"))` ...[∵ i2 = – 1]
= `((5 + 10"i"))/(-(5 + "i")`
= `((5 + 10"i")(5 - "i"))/(-(5 + "i")(5 - "i"))`
= `(25 - 5"i" + 50"i" - 10"i"^2)/(-(25 - "i"^2)`
= `(25 + 45"i" - 10(-1))/(-[25 - (-1)]`
= `(35 + 45"i")/(-26)`
= `(-35)/26 - 45/26"i"`
APPEARS IN
RELATED QUESTIONS
Find the multiplicative inverse of the complex number:
4 – 3i
Find the value of i49 + i68 + i89 + i110
Find the value of i + i2 + i3 + i4
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Write the conjugates of the following complex number:
`-sqrt(-5)`
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
Evaluate : `("i"^37 + 1/"i"^67)`
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real
Find the value of x and y which satisfy the following equation (x, y∈R).
`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i
Find the value of x and y which satisfy the following equation (x, y ∈ R).
`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`
Select the correct answer from the given alternatives:
`sqrt(-3) sqrt(-6)` is equal to
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Solve the following equation for x, y ∈ R:
2x + i9y (2 + i) = xi7 + 10i16
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
Evaluate: (1 + i)6 + (1 – i)3
If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
State true or false for the following:
The argument of the complex number z = `(1 + i sqrt(3))(1 + i)(cos theta + i sin theta)` is `(7pi)/12 + theta`.
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
What is the reciprocal of `3 + sqrt(7)i`.
What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?
If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
`((1 + cosθ + isinθ)/(1 + cosθ - isinθ))^n` = ______.
Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Show that `(-1 + sqrt3 i)^3` is a real number.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Evaluate the following:
i35