Advertisements
Advertisements
Question
What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?
Solution
Let z = x + iy.
Then z – 2 – 3i = (x – 2) + i(y – 3)
Let θ be the amplitude of z – 2 – 3i.
Then `tan theta = (y - 3)/(x - 2)`
⇒ `tan pi/4 = (y - 3)/(x - 2)("since" theta = pi/4)`
⇒ 1 = `(y - 3)/(x - 2)` i.e. x – y + 1 = 0,
Hence, the locus of z is a straight line.
APPEARS IN
RELATED QUESTIONS
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
Simplify the following and express in the form a + ib:
`5/2"i"(- 4 - 3 "i")`
Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Answer the following:
Simplify the following and express in the form a + ib:
(2i3)2
Answer the following:
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Answer the following:
Evaluate: i131 + i49
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
Answer the following:
Simplify: `("i"^65 + 1/"i"^145)`
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is
The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______
Evaluate: (1 + i)6 + (1 – i)3
Number of solutions of the equation z2 + |z|2 = 0 is ______.
If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
State True or False for the following:
Multiplication of a non-zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.
Find `|(1 + i) ((2 + i))/((3 + i))|`.
If `((1 + i)/(1 - i))^x` = 1, then ______.
If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.
`((1 + cosθ + isinθ)/(1 + cosθ - isinθ))^n` = ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`
Show that `(-1 + sqrt3i)^3` is a real number.