Advertisements
Advertisements
Question
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
Solution
`(1/(1-4i) - 2/(1+i))((3-4i)/(5+i)) = [((1 + i) - 2(1 + 4i))/((1 - 4i)(1 + i)]] [ (3 - 4i)/(5 +i)]`
= `[(1 + i - 2 + 8i)/(1 + i - 4i - 4i^2)][(3 - 4i)/(5 +i)] = [(- 1 + 9i)/(5 - 3i)] [(3 - 4i)/(5 + i)]`
= `[( - 3 + 4i + 27i - 36i^2)/(25 + 5i - 15i - 3i^2)] = (33 + 31i)/(28 - 10i) =(33 + 31i)/(2(14 - 5i)`
= `(33 + 31i )/(2(14 - 5i)) xx (14 + 5i)/(14 + 5i)`
= `(462 + 165i + 434i + 155i^2)/(2[(14)^2 - (5i)^2]] xx (307 + 599i)/(2(196 - 25i^2)`
= `(307 + 599i)/(2(221)) = (307 + 599i)/442 = 307/442 + (599i)/442`
APPEARS IN
RELATED QUESTIONS
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i
Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.
Write the conjugates of the following complex number:
3 – i
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Find the value of i + i2 + i3 + i4
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
Answer the following:
Simplify the following and express in the form a + ib:
(2 + 3i)(1 − 4i)
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i
Answer the following:
If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is
If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.
Evaluate: (1 + i)6 + (1 – i)3
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
What is the reciprocal of `3 + sqrt(7)i`.
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
The area of the triangle on the complex plane formed by the complex numbers z, –iz and z + iz is ______.
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
Solve the equation |z| = z + 1 + 2i.
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.
The value of `(z + 3)(barz + 3)` is equivalent to ______.
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Show that `(-1 + sqrt3 i)^3` is a real number.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`