हिंदी

Reduce (11-4i-21+i)(3-4i5+i) to the standard form. - Mathematics

Advertisements
Advertisements

प्रश्न

Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.

योग

उत्तर

`(1/(1-4i) - 2/(1+i))((3-4i)/(5+i)) = [((1 + i) - 2(1 + 4i))/((1 - 4i)(1 + i)]] [ (3 - 4i)/(5 +i)]`

= `[(1 + i - 2 + 8i)/(1 + i - 4i - 4i^2)][(3 - 4i)/(5 +i)] = [(- 1 + 9i)/(5 - 3i)] [(3 - 4i)/(5 + i)]`

= `[( - 3 + 4i + 27i - 36i^2)/(25 + 5i - 15i - 3i^2)] = (33 + 31i)/(28 - 10i) =(33 + 31i)/(2(14 - 5i)`

= `(33  + 31i )/(2(14 - 5i)) xx (14  + 5i)/(14  + 5i)`

= `(462 + 165i + 434i + 155i^2)/(2[(14)^2 - (5i)^2]] xx (307 + 599i)/(2(196 - 25i^2)`

= `(307 + 599i)/(2(221)) = (307 + 599i)/442 = 307/442 + (599i)/442`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Miscellaneous Exercise [पृष्ठ ११२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Miscellaneous Exercise | Q 3 | पृष्ठ ११२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the multiplicative inverse of the complex number.

`sqrt5 + 3i`


If `((1+i)/(1-i))^m` = 1, then find the least positive integral value of m.


Find the value of: x3 –  x2 + x + 46, if x = 2 + 3i


Simplify the following and express in the form a + ib:

`3 + sqrt(-64)`


Simplify the following and express in the form a + ib: 

(2i3)2 


Simplify the following and express in the form a + ib:

`(4 + 3"i")/(1 - "i")`


Write the conjugates of the following complex number:

`-sqrt(5) - sqrt(7)"i"`


Write the conjugates of the following complex number:

5i


Is (1 + i14 + i18 + i22) a real number? Justify your answer


Evaluate : `("i"^37 + 1/"i"^67)`


If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)


If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1


Answer the following:

Simplify the following and express in the form a + ib:

`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`


Answer the following:

Solve the following equation for x, y ∈ R:

(4 − 5i)x + (2 + 3i)y = 10 − 7i


Answer the following:

Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0


Answer the following:

Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`


If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.


If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is


The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______


If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.


If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.


The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.


If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.


What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?


What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?


What is the principal value of amplitude of 1 – i?


Number of solutions of the equation z2 + |z|2 = 0 is ______.


If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.


The number `(1 - i)^3/(1 - i^2)` is equal to ______.


If z is a complex number, then ______.


If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.


If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×