हिंदी

If x + iy = (a + ib)3, show that xa+yb = 4(a2 − b2) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)

योग

उत्तर

x + iy = (a + ib)3 

∴ x + iy = a3 + 3a2(ib) + 3a(ib)2 + (ib)3

∴ x + iy = a3 + 3a2bi + 3ab2i2 + b3i3

∴ x + iy = a3 + 3a2bi – 3ab2 – b3i   ...[∵ i2 = – 1, i3 = – i]

∴ x + yi = (a3 – 3ab2) + (3a2b – b3)i

Equating the real and imaginary parts separately, we get,

x = a3 – 3ab2 and y = 3a2b – b3

∴ x = a(a2 – 3b2) and y = b(3a2 – b2)

∴ `x/"a"` = a2 – 3b2 and `y/"b"` = 3a2 – b2

∴ `x/"a" + y/"b"` = a2 – 3b2 + 3a2 – b2 = 4a2 – 4b2

∴ `x/"a" + y/"b"` = 4(a2 – b2)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Complex Numbers - Exercise 1.1 [पृष्ठ ६]

APPEARS IN

संबंधित प्रश्न

Find the multiplicative inverse of the complex number.

`sqrt5 + 3i`


Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.


If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`


Find the value of: x3 –  x2 + x + 46, if x = 2 + 3i


Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`


Simplify the following and express in the form a + ib:

`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`


Write the conjugates of the following complex number:

3 + i


Write the conjugates of the following complex number:

cosθ + i sinθ


Show that 1 + i10 + i100 − i1000 = 0 


Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16


If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a


If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)


Select the correct answer from the given alternatives:

If n is an odd positive integer then the value of 1 + (i)2n + (i)4n + (i)6n is :


Answer the following:

Simplify the following and express in the form a + ib:

`5/2"i"(-4 - 3"i")`


Answer the following:

Simplify the following and express in the form a + ib:

`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`


Answer the following:

Simplify the following and express in the form a + ib:

`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`


Answer the following:

show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2


The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______


If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.


If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.


Locate the points for which 3 < |z| < 4.


Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`


If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.


Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.


If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.


The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.


The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.


Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.


If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.


If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.


If α, β, γ and a, b, c are complex numbers such that `α/a +  β/b + γ/c` = 1 + i and `a/α +  b/β + c/γ` = 0, then the value of `α^2/a^2 +  β^2/b^2 + γ^2/c^2` is equal to ______.


Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a+ib.

`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`


Simplify the following and express in the form a+ib:

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×