Advertisements
Advertisements
प्रश्न
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
उत्तर
x + iy = (a + ib)3
∴ x + iy = a3 + 3a2(ib) + 3a(ib)2 + (ib)3
∴ x + iy = a3 + 3a2bi + 3ab2i2 + b3i3
∴ x + iy = a3 + 3a2bi – 3ab2 – b3i ...[∵ i2 = – 1, i3 = – i]
∴ x + yi = (a3 – 3ab2) + (3a2b – b3)i
Equating the real and imaginary parts separately, we get,
x = a3 – 3ab2 and y = 3a2b – b3
∴ x = a(a2 – 3b2) and y = b(3a2 – b2)
∴ `x/"a"` = a2 – 3b2 and `y/"b"` = 3a2 – b2
∴ `x/"a" + y/"b"` = a2 – 3b2 + 3a2 – b2 = 4a2 – 4b2
∴ `x/"a" + y/"b"` = 4(a2 – b2)
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
cosθ + i sinθ
Show that 1 + i10 + i100 − i1000 = 0
Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16
If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Select the correct answer from the given alternatives:
If n is an odd positive integer then the value of 1 + (i)2n + (i)4n + (i)6n is :
Answer the following:
Simplify the following and express in the form a + ib:
`5/2"i"(-4 - 3"i")`
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______
If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.
If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.
Locate the points for which 3 < |z| < 4.
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.
Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.
If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.
The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`