Advertisements
Advertisements
प्रश्न
If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a
उत्तर
a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2`
∴ a2 = `((-1 + sqrt(3)"i")/2)^2 = (1 - 2sqrt(3)"i" + 3"i"^2)/4`
= `(1 - 2sqrt(3)"i" + 3(-1))/4` ...[∵ i2 = – 1]
= `(-2 - 2sqrt(3)"i")/4`
= `(-1 - sqrt(3)"i")/2` = b
and b2 = `((-1 - sqrt(3)"i")/2)^2 = (1 + 2sqrt(3)"i" + 3"i"^2)/4`
= `(1 + 2sqrt(3)"i" + 3(-1))/4` . ...[∵ i2 = – 1]
= `(-2 + 2sqrt(3)"i")/4`
= `(-1 + sqrt(3)"i")/2` = a
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
If `x – iy = sqrt((a-ib)/(c - id))` prove that `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Write the conjugates of the following complex number:
`-sqrt(-5)`
Write the conjugates of the following complex number:
5i
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Find the value of i49 + i68 + i89 + i110
Show that 1 + i10 + i100 − i1000 = 0
Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
Select the correct answer from the given alternatives:
`sqrt(-3) sqrt(-6)` is equal to
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Answer the following:
Solve the following equation for x, y ∈ R:
`(x + "i"y)/(2 + 3"i")` = 7 – i
Answer the following:
Show that z = `((-1 + sqrt(-3))/2)^3` is a rational number
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).
If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.
If |z + 1| = z + 2(1 + i), then find z.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
Multiplicative inverse of 1 + i is ______.
If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.
State True or False for the following:
For any complex number z the minimum value of |z| + |z – 1| is 1.
State True or False for the following:
The inequality |z – 4| < |z – 2| represents the region given by x > 3.
Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.
The value of `(z + 3)(barz + 3)` is equivalent to ______.
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.
If z is a complex number, then ______.
If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
Simplify the following and express in the form a + ib.
`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`