हिंदी

Find the multiplicative inverse of the complex number. 5+3i - Mathematics

Advertisements
Advertisements

प्रश्न

Find the multiplicative inverse of the complex number.

`sqrt5 + 3i`

योग

उत्तर

Multiplicative inverse of `sqrt5 + 3i`

= `1/(sqrt5  + 3i) = 1/(sqrt5  + 3i) xx (sqrt5 - 3i)/ (sqrt5 - 3i)`

= `(sqrt5 - 3i)/(5 - 9i^2)`

= `(sqrt5 - 3i)/(5 +9)`

= `(sqrt(5) - 3i)/14`

= `sqrt5/14 - 3/14 i`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Exercise 5.1 [पृष्ठ १०४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Exercise 5.1 | Q 12 | पृष्ठ १०४
आरडी शर्मा Mathematics [English] Class 11
अध्याय 13 Complex Numbers
Exercise 13.2 | Q 4.4 | पृष्ठ ३२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the multiplicative inverse of the complex number.

–i 


If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.


Find the value of i + i2 + i3 + i4 


Simplify the following and express in the form a + ib:

`3 + sqrt(-64)`


Simplify the following and express in the form a + ib: 

(2i3)2 


Simplify the following and express in the form a + ib:

(2 + 3i)(1 – 4i)


Simplify the following and express in the form a + ib:

(1 + 3i)2 (3 + i)


Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.


Write the conjugates of the following complex number:

3 + i


Write the conjugates of the following complex number:

`sqrt(2) + sqrt(3)"i"`


Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20


Show that 1 + i10 + i100 − i1000 = 0 


If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a


Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real


Find the value of x and y which satisfy the following equation (x, y∈R).

`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i


Find the value of x and y which satisfy the following equation (x, y∈R).

If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y


Find the value of x and y which satisfy the following equation (x, y∈R).

If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y


Select the correct answer from the given alternatives:

The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:


Answer the following:

Simplify the following and express in the form a + ib:

(2 + 3i)(1 − 4i)


Answer the following:

Simplify the following and express in the form a + ib:

(1 + 3i)2(3 + i)


Answer the following:

Solve the following equations for x, y ∈ R:

(x + iy) (5 + 6i) = 2 + 3i


Answer the following:

Simplify: `("i"^65 + 1/"i"^145)`


Answer the following:

Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`


If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.


Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.


If z = x + iy, then show that `z  barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.


If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.


The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.


State True or False for the following:

Multiplication of a non-zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.


State True or False for the following:

For any complex number z the minimum value of |z| + |z – 1| is 1.


The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.


If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.


If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.


Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`


Evaluate the following:

i35


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×