Advertisements
Advertisements
प्रश्न
Answer the following:
Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
उत्तर
`[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
= `[(1 + "i" + 3 - 6"i")/((1 - 2"i")(1 + "i"))] [(3 + 4"i")/(2 - 4"i")]`
= `[(4 - 5"i")/(1 + "i" - 2"i" - 2"i"^2)] [(3 + 4"i")/(2 - 4"i")]`
= `((4 - 5"i")(3 + 4"i"))/((3 - "i")(2 - 4"i"))`
= `(12 + 16"i" - 15"i" - 20"i"^2)/(6 - 12"i" - 2"i" + 4"i"^2)`
= `(12 + "i" + 20)/(6 - 14"i" - 4)`
= `(32 + "i")/(2 - 14"i")`
= `((32 + "i")(2 + 14"i"))/((2 - 14"i")(2 + 14"i"))`
= `(64 + 448"i" + 2"i" + 14"i"^2)/(4 - 196"i"^2)`
= `(64 + 450"i" - 14)/(4 + 196)`
= `(50 + 450"i")/200`
= `50/200 (1 + 9"i")`
= `1/4 + 9/4"i"`
APPEARS IN
संबंधित प्रश्न
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
Find the number of non-zero integral solutions of the equation `|1-i|^x = 2^x`.
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i
Write the conjugates of the following complex number:
`-sqrt(5) - sqrt(7)"i"`
Write the conjugates of the following complex number:
`-sqrt(-5)`
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Select the correct answer from the given alternatives:
`sqrt(-3) sqrt(-6)` is equal to
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Answer the following:
Simplify the following and express in the form a + ib:
`5/2"i"(-4 - 3"i")`
Answer the following:
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Solve the following equation for x, y ∈ R:
2x + i9y (2 + i) = xi7 + 10i16
Answer the following:
Evaluate: i131 + i49
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
State true or false for the following:
The complex number cosθ + isinθ can be zero for some θ.
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
What is the principal value of amplitude of 1 – i?
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`
If |z + 1| = z + 2(1 + i), then find z.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
State True or False for the following:
Multiplication of a non-zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.
State True or False for the following:
The inequality |z – 4| < |z – 2| represents the region given by x > 3.
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`
Find the value of `sqrt(-3) xx sqrt(-6)`
Show that `(-1 + sqrt3i)^3` is a real number.