Advertisements
Advertisements
प्रश्न
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
उत्तर
`(4 + 3"i")/(1 - "i") = ((4 + 3"i")(1 + "i"))/((1 - "i")(1 + "i")`
= `(4 + 4"i" + 3"i" + 3"i"^2)/(1 - "i"^2)`
= `(4 + 7"i" + 3(-1))/(1 - (-1)` ...[∵ i2 = – 1]
= `(1 + 7"i")/2`
= `1/2+7/2"i"`.
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number:
4 – 3i
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Simplify the following and express in the form a + ib:
`5/2"i"(- 4 - 3 "i")`
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
Find the value of x and y which satisfy the following equation (x, y∈R).
(x + 2y) + (2x − 3y)i + 4i = 5
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Answer the following:
Simplify the following and express in the form a + ib:
`5/2"i"(-4 - 3"i")`
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
1 + i2 + i4 + i6 + ... + i2n is ______.
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.
If `((1 + i)/(1 - i))^x` = 1, then ______.
If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`