हिंदी

Find the complex number satisfying the equation z+2|(z+1)|+i = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.

योग

उत्तर

Given that: z + `sqrt(2) |(z + 1)| + i` = 0

Let z = x + yi

∴ `(x + yi) + sqrt(2)|(x + yi + 1)| + i` = 0

⇒ `x + (y + 1)i + sqrt(2)|(x + 1) + yi|` = 0

⇒ `x + (y + 1)i + sqrt(2) sqrt((x + 1)^2 + y^2)` = 0

⇒ `x + (y + 1)i + sqrt(2) sqrt(x^2 + 2x + 1 + y^2)` = 0 + 0i

⇒ `x + sqrt(2) sqrt(x^2 + 2x + 1 + y^2)` = 0, y + 1 = 0

⇒ x = `- sqrt(2) sqrt(x^2 + 2x + 1 + y^2)` and y = –1

⇒ x2 = 2(x2 + 2x + 1 + y2)

⇒ x2 = 2x2 + 4x + 2 + 2y2

⇒ x2 + 4x + 2 + 2y2 = 0

⇒ x2 + 4x + 2 + 2(–1)2 = 0  .....[∵y = –1]

⇒ x2 + 4x + 4 = 0

⇒ (x + 2)2 = 0

⇒ x + 2 = 0

⇒ x = –2

Hence, z = x + yi = –2 – i.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Exercise | Q 22 | पृष्ठ ९२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If `x – iy = sqrt((a-ib)/(c - id))` prove that `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`


Show that 1 + i10 + i20 + i30 is a real number.


Simplify the following and express in the form a + ib:

`5/2"i"(- 4 - 3 "i")`


Simplify the following and express in the form a + ib:

`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`


Simplify the following and express in the form a + ib:

`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`


Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.


Write the conjugates of the following complex number:

`-sqrt(-5)`


Write the conjugates of the following complex number:

`sqrt(5) - "i"`


Find the value of i49 + i68 + i89 + i110 


Find the value of x and y which satisfy the following equation (x, y∈R).

`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i


Find the value of x and y which satisfy the following equation (x, y∈R).

If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y


Answer the following:

Simplify the following and express in the form a + ib:

`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`


Answer the following:

Solve the following equation for x, y ∈ R:

`(x + "i"y)/(2 + 3"i")` = 7 – i


Solve the following equation for x, y ∈ R:

2x + i9y (2 + i) = xi7 + 10i16


Answer the following:

Evaluate: (1 − i + i2)−15 


Answer the following:

Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`


The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.


State true or false for the following:

The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.


What is the reciprocal of `3 + sqrt(7)i`.


1 + i2 + i4 + i6 + ... + i2n is ______.


If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.


For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.


The value of `sqrt(-25) xx sqrt(-9)` is ______.


If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.


State True or False for the following:

Multiplication of a non-zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.


The value of `(z + 3)(barz + 3)` is equivalent to ______.


Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.


If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.


Simplify the following and express in the form a + ib.

`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×