Advertisements
Advertisements
प्रश्न
Show that 1 + i10 + i20 + i30 is a real number.
उत्तर
1 + i10 + i20 + i30
= 1 + (i4)2 .i2 + (i4)5 + (i4)7 .i2
= 1 + (1)2 (– 1 ) + (1)5 + (1)7 (– 1) ...[∵ i4 = 1, i2 = –1]
= 1 – 1 + 1 –1
= 0, which is a real number.
APPEARS IN
संबंधित प्रश्न
Find the number of non-zero integral solutions of the equation `|1-i|^x = 2^x`.
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.
Simplify the following and express in the form a + ib:
`5/2"i"(- 4 - 3 "i")`
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
Answer the following:
Simplify the following and express in the form a + ib:
(2i3)2
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Solve the following equation for x, y ∈ R:
2x + i9y (2 + i) = xi7 + 10i16
Answer the following:
Evaluate: (1 − i + i2)−15
The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______
1 + i2 + i4 + i6 + ... + i2n is ______.
The area of the triangle on the complex plane formed by the complex numbers z, –iz and z + iz is ______.
State True or False for the following:
Multiplication of a non-zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.
The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`
Find the value of `sqrt(-3) xx sqrt(-6)`
Simplify the following and express in the form a + ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`