हिंदी

Find the value of i49 + i68 + i89 + i110 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the value of i49 + i68 + i89 + i110 

योग

उत्तर

i49 + i68 + i89 + i110 
= (i4)12 .i + (i4)17 + (i4)22 .i + (i4)27 .i2
= (1)12 .i + (1)17 + (1)22 .i + (1)27 (– 1)    ...[∵ i4 = 1, i2 = – 1]
= i + 1 + i – 1
= 2i

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Complex Numbers - EXERCISE 3.1 [पृष्ठ ३८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 3 Complex Numbers
EXERCISE 3.1 | Q 6) i) | पृष्ठ ३८

संबंधित प्रश्न

Write the conjugates of the following complex number:

5i


Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`


If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)


Answer the following:

Simplify the following and express in the form a + ib:

`3 + sqrt(-64)`


Answer the following:

Solve the following equation for x, y ∈ R:

`(x + "i"y)/(2 + 3"i")` = 7 – i


Answer the following:

Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`


Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`


State true or false for the following:

The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.


Number of solutions of the equation z2 + |z|2 = 0 is ______.


For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`


Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.


If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.


If z = x + iy, then show that `z  barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.


Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.


State True or False for the following:

For any complex number z the minimum value of |z| + |z – 1| is 1.


Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.


Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Find the value of `sqrt(-3) xx sqrt(-6)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×