Advertisements
Advertisements
प्रश्न
Find the value of i49 + i68 + i89 + i110
उत्तर
i49 + i68 + i89 + i110
= (i4)12 .i + (i4)17 + (i4)22 .i + (i4)27 .i2
= (1)12 .i + (1)17 + (1)22 .i + (1)27 (– 1) ...[∵ i4 = 1, i2 = – 1]
= i + 1 + i – 1
= 2i
APPEARS IN
संबंधित प्रश्न
Write the conjugates of the following complex number:
5i
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Answer the following:
Solve the following equation for x, y ∈ R:
`(x + "i"y)/(2 + 3"i")` = 7 – i
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
State true or false for the following:
The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.
Number of solutions of the equation z2 + |z|2 = 0 is ______.
For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.
If z = x + iy, then show that `z barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.
Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.
State True or False for the following:
For any complex number z the minimum value of |z| + |z – 1| is 1.
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.
Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Find the value of `sqrt(-3) xx sqrt(-6)`