Advertisements
Advertisements
प्रश्न
For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`
उत्तर
We have `(1 - i)^n (1 - 1/i)^"n"`
= `[(1 - i)(1 - 1/i)]^n`
= `[(1 - i) (1 - 1/i xx i/i)]^n`
= `[(1 - i)(1 - i/i^2)]^n`
= `[(1 - i)(1 + i)]^n` .....`[because i^2 = -1]`
= `[1 - i^2]^n`
= `[1 + 1]^"n"`
= 2n
Hence, `(1 - i)^n (1 - 1/i)^n` = 2n.
APPEARS IN
संबंधित प्रश्न
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.
Simplify the following and express in the form a + ib:
(2i3)2
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Write the conjugates of the following complex number:
cosθ + i sinθ
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
Show that 1 + i10 + i100 − i1000 = 0
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
Find the value of x and y which satisfy the following equation (x, y ∈ R).
`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Answer the following:
Find the value of x3 + 2x2 − 3x + 21, if x = 1 + 2i
Answer the following:
If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1
If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.
Evaluate: (1 + i)6 + (1 – i)3
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.
State true or false for the following:
Multiplication of a non-zero complex number by i rotates it through a right angle in the anti-clockwise direction.
State true or false for the following:
The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.
State true or false for the following:
If n is a positive integer, then the value of in + (i)n+1 + (i)n+2 + (i)n+3 is 0.
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.
If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.
The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`