Advertisements
Advertisements
प्रश्न
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
उत्तर
The conjugates of `sqrt(5) - "i"` is `sqrt(5) + "i"`
APPEARS IN
संबंधित प्रश्न
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
If `((1+i)/(1-i))^m` = 1, then find the least positive integral value of m.
Simplify the following and express in the form a + ib:
`5/2"i"(- 4 - 3 "i")`
Simplify the following and express in the form a + ib:
(1 + 3i)2 (3 + i)
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i
Write the conjugates of the following complex number:
`-sqrt(5) - sqrt(7)"i"`
Write the conjugates of the following complex number:
`-sqrt(-5)`
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Find the value of x and y which satisfy the following equation (x, y∈R).
`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
Answer the following:
Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real
Answer the following:
Simplify: `("i"^65 + 1/"i"^145)`
If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.
Locate the points for which 3 < |z| < 4.
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.
State true or false for the following:
The complex number cosθ + isinθ can be zero for some θ.
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
If |z + 1| = z + 2(1 + i), then find z.
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.
A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.
If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.
Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`