Advertisements
Advertisements
प्रश्न
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
विकल्प
x = 0
y = 0
x ≠ 0
y ≠ 0
उत्तर
Let x, y ∈ R, then x + iy is a non-real complex number if y ≠ 0.
Explanation:
x + yi is a non-real complex number if y ≠ 0.
If x, y ∈ R.
APPEARS IN
संबंधित प्रश्न
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Write the conjugates of the following complex number:
`-sqrt(5) - sqrt(7)"i"`
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Evaluate: `("i"^37 + 1/"i"^67)`
Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16
Find the value of x and y which satisfy the following equation (x, y∈R).
`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Answer the following:
Evaluate: i131 + i49
Answer the following:
Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i
Answer the following:
Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`
If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.
Locate the points for which 3 < |z| < 4.
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
State true or false for the following:
The complex number cosθ + isinθ can be zero for some θ.
State true or false for the following:
The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.
1 + i2 + i4 + i6 + ... + i2n is ______.
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).
If |z + 1| = z + 2(1 + i), then find z.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
The value of `(z + 3)(barz + 3)` is equivalent to ______.
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.
The complex number z = x + iy which satisfy the equation `|(z - 5i)/(z + 5i)|` = 1, lie on ______.
Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`
Simplify the following and express in the form a+ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`