Advertisements
Advertisements
प्रश्न
Answer the following:
Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`
उत्तर
`("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`
= `("i"^29(1 + "i"^10 + "i"^20))/("i"^30(1 + "i"^10 + "i"^20)`
= `1/"i" = 1/"i" xx "i"/"i" = "i"/"i"^2`
= `"i"/(-1)`
= – i.
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
–i
If `x – iy = sqrt((a-ib)/(c - id))` prove that `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of i + i2 + i3 + i4
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Find the value of: x3 – 3x2 + 19x – 20, if x = 1 – 4i
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Answer the following:
Simplify the following and express in the form a + ib:
(2 + 3i)(1 − 4i)
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______
If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.
The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.
State true or false for the following:
The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
Number of solutions of the equation z2 + |z|2 = 0 is ______.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
The value of `sqrt(-25) xx sqrt(-9)` is ______.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.
If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.
Simplify the following and express in the form a + ib.
`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`
Find the value of `sqrt(-3) xx sqrt(-6)`