हिंदी

Number of solutions of the equation z2 + |z|2 = 0 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Number of solutions of the equation z2 + |z|2 = 0 is ______.

विकल्प

  • 1

  • 2

  • 3

  • Infinitely many

MCQ
रिक्त स्थान भरें

उत्तर

Number of solutions of the equation z2 + |z|2 = 0 is infinitely many.

Explanation:

z2 + |z|2 = 0, z ≠ 0

⇒ x2 – y2 + i2xy + x2 + y2 = 0

⇒ 2x2 + i2xy = 0, 2x(x + iy) = 0

⇒ x = 0 or x + iy = 0  ......(not possible)

Therefore, x = 0 and z ≠ 0

So y can have any real value. Hence infinitely many solutions.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Solved Examples [पृष्ठ ९०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Solved Examples | Q 32 | पृष्ठ ९०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the number of non-zero integral solutions of the equation `|1-i|^x  = 2^x`.


Simplify the following and express in the form a + ib:

`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`


Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`


Show that 1 + i10 + i100 − i1000 = 0 


If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0


Find the value of x and y which satisfy the following equation (x, y∈R).

(x + 2y) + (2x − 3y)i + 4i = 5


Find the value of x and y which satisfy the following equation (x, y∈R).

`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i


Select the correct answer from the given alternatives:

If n is an odd positive integer then the value of 1 + (i)2n + (i)4n + (i)6n is :


Select the correct answer from the given alternatives:

The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:


Answer the following:

Simplify the following and express in the form a + ib:

(2i3)2 


Answer the following:

Simplify the following and express in the form a + ib:

`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`


Answer the following:

Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`


Answer the following:

Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`


The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______


If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.


The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.


State true or false for the following:

The argument of the complex number z = `(1 + i sqrt(3))(1 + i)(cos theta + i sin theta)` is `(7pi)/12 + theta`.


Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.


If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.


Let x, y ∈ R, then x + iy is a non-real complex number if ______.


If z is a complex number, then ______.


If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a+ib:

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Show that `(-1 + sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×