Advertisements
Advertisements
प्रश्न
Answer the following:
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
उत्तर
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
= `(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i") xx (sqrt(5) + sqrt(3)"i")/(sqrt(5) + sqrt(3)"i")`
= `(sqrt(5) + sqrt(3)"i")^2/((sqrt(5))^2 - (sqrt(3)"i")^2`
= `(5 + 2sqrt(15)"i" + 3"i"^2)/(5 - 3"i"^2)`
= `(5 + 2sqrt(15)"i" - 3)/(5 + 3)` ...[∵ i2 = – 1]
= `(2 + 2sqrt(15)"i")/8`
= `1/4 + sqrt(15)/4"i"`, which is of the form a + bi.
APPEARS IN
संबंधित प्रश्न
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of i49 + i68 + i89 + i110
Find the value of i + i2 + i3 + i4
Simplify the following and express in the form a + ib:
(1 + 3i)2 (3 + i)
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.
Write the conjugates of the following complex number:
5i
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Write the conjugates of the following complex number:
cosθ + i sinθ
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
Evaluate: `("i"^37 + 1/"i"^67)`
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
Find the value of x and y which satisfy the following equation (x, y ∈ R).
`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Solve the following equation for x, y ∈ R:
2x + i9y (2 + i) = xi7 + 10i16
Answer the following:
Evaluate: (1 − i + i2)−15
Answer the following:
Evaluate: i131 + i49
Answer the following:
Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real
The value of (2 + i)3 × (2 – i)3 is ______.
If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.
State True or False for the following:
Multiplication of a non-zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.
State True or False for the following:
For any complex number z the minimum value of |z| + |z – 1| is 1.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
If `((1 + i)/(1 - i))^x` = 1, then ______.
The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.
If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
Simplify the following and express in the form a + ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`