Advertisements
Advertisements
प्रश्न
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
उत्तर
x + iy = `sqrt(("a" + "ib")/("c" + "id")`
∴ (x + iy)2 = `("a" + "ib")/("c" + "id")`
∴ x2 + 2xyi + y2i2 = `("a" + "ib")/("c" + "id") xx ("c" - "id")/("c" - "id")`
∴ x2 + 2xyi – y2 = `("ac" - "adi" + "bci" - "bdi"^2)/("c"^2 - "d"^2"i"^2)` ...[∵ i2 = –1]
∴ (x2 – y2) + 2xyi = `("ac" - "adi" + "bci" + "bd")/("c"^2 + "d"^2)`
∴ (x2 – y2) + 2xyi =`(("ac" + "bd") + ("bc" - "ad")"i")/("c"^2 + "d"^2)`
∴ (x2 – y2) + 2xyi = `(("ac" + "bd")/("c"^2 + "d"^2)) + (("bc" - "ad")/("c"^2 + "d"^2))"i"`
Equating the real and imaginary parts separately, we get,
x2 – y2 = `("ac" + "bd")/("c"^2 + "d"^2)` and 2xy = `("bc" - "ad")/("c"^2 + "d"^2)`
∴ (x2 + y2)2 = (x2 – y2)2 + 4x2y2
= (x2 – y2)2 + (2xy)2
= `(("ac" + "bd")/("c"^2 + "d"^2))^2 + (("bc" - "ad")/("c"^2 + "d"^2))^2`
= `(("ac" + "bd")^2 + ("bc" - "ad")^2)/("c"^2 + "d"^2)^2`
= `("a"^2"c"^2 + 2"abcd" + "b"^2"d"^2 + "b"^2"c"^2 - 2"abcd" + "a"^2"d"^2)/("c"^2 + "d"^2)^2`
= `(("a"^2"c"^2 + "b"^2"c"^2) + ("a"^2"d"^2 + "b"^2"d"^2))/("c"^2 + "d"^2)^2`
= `(("a"^2 + "b"^2)"c"^2 + ("a"^2 + "b"^2)"d"^2)/("c"^2 + "d"^2)^2`
= `(("a"^2 + "b"^2)("c"^2 + "d"^2))/("c"^2 + "d"^2)^2`
∴ (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number:
4 – 3i
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.
Simplify the following and express in the form a + ib:
(2 + 3i)(1 – 4i)
Write the conjugates of the following complex number:
5i
Find the value of i49 + i68 + i89 + i110
Find the value of i + i2 + i3 + i4
Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Find the value of x and y which satisfy the following equation (x, y∈R).
`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i
Find the value of x and y which satisfy the following equation (x, y ∈ R).
`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Select the correct answer from the given alternatives:
If n is an odd positive integer then the value of 1 + (i)2n + (i)4n + (i)6n is :
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
Evaluate: (1 − i + i2)−15
Answer the following:
Simplify: `("i"^65 + 1/"i"^145)`
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
Answer the following:
Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.
State true or false for the following:
Multiplication of a non-zero complex number by i rotates it through a right angle in the anti-clockwise direction.
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
1 + i2 + i4 + i6 + ... + i2n is ______.
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
Solve the equation |z| = z + 1 + 2i.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
State True or False for the following:
For any complex number z the minimum value of |z| + |z – 1| is 1.
The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.
Which of the following is correct for any two complex numbers z1 and z2?
If a + ib = c + id, then ______.
If z is a complex number, then ______.
If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.
If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Show that `(-1 + sqrt3 i)^3` is a real number.
Simplify the following and express in the form a + ib.
`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`