हिंदी

Find the value of x and y which satisfy the following equation (x, y∈R). If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the value of x and y which satisfy the following equation (x, y∈R).

If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y

योग

उत्तर

x + 2i + 15i6y = 7x + i3 (y + 4)

∴ x + 2i – 15y = 7x – i(y + 4)  ...[∵ i6 = (i2)3 = – 1, i3 = – i]

∴ x + 2i – 15y – 7x + i(y + 4) = 0

∴ (– 6x – 15y) + (2 + y + 4)i = 0 + 0.i

Equating the real and imaginary parts, we get,

∴ – 6x – 15y = 0   ...(1)

and y + 6 = 0   ...(2)

From (2), y = – 6

Substituting y = – 6 in (1), we get,

– 6x + 90 = 0

∴ x = 15

∴ x + y = 15 – 6 = 9

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Complex Numbers - Exercise 1.1 [पृष्ठ ७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 1 Complex Numbers
Exercise 1.1 | Q 24. (v) | पृष्ठ ७

संबंधित प्रश्न

Find the multiplicative inverse of the complex number:

4 – 3i


Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.


Simplify the following and express in the form a + ib: 

(2i3)2 


Simplify the following and express in the form a + ib:

`5/2"i"(- 4 - 3 "i")`


Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i


Write the conjugates of the following complex number:

3 – i


Write the conjugates of the following complex number:

5i


Find the value of i + i2 + i3 + i4 


Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20


Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`


Answer the following:

Solve the following equation for x, y ∈ R:

(4 − 5i)x + (2 + 3i)y = 10 − 7i


Answer the following:

Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`


Answer the following:

Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0


Answer the following:

If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1


If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.


Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.


The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.


State true or false for the following:

If n is a positive integer, then the value of in + (i)n+1 + (i)n+2 + (i)n+3 is 0.


What is the reciprocal of `3 + sqrt(7)i`.


1 + i2 + i4 + i6 + ... + i2n is ______.


If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.


If z = x + iy, then show that `z  barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.


If |z + 1| = z + 2(1 + i), then find z.


If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.


If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.


For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.


The value of `sqrt(-25) xx sqrt(-9)` is ______.


The number `(1 - i)^3/(1 - i^2)` is equal to ______.


The value of `(z + 3)(barz + 3)` is equivalent to ______.


If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.


If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.


The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.


If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.


Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`


Simplify the following and express in the form a+ib:

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Evaluate the following:

i35


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×