Advertisements
Advertisements
प्रश्न
Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20
उत्तर
1 + i2 + i4 + i6 + i8 + ... + i20
= 1 + (i2 + i4) + (i6 + i8) + (i10 + i12) + (i14 + i16) + (i18 + i20)
= 1 + [i2 + (i2)2] + [(i2)3 + (i2)4] + [(i2)5 + (i2)6] + [(i2)7 + (i2)8] + [(i2)9 + (i2)10]
= 1 + [–1 + (– 1)2] + [(– 1)3 + (–1)4] + [(– 1)5 + (– 1)6] + [(– 1)7 + (– 1)8] + [(– 1)9 + (– 1)10] ...[∵ i2 = –1]
= 1 + (– 1 + 1) + (– 1 + 1) + (– 1 + 1) + (– 1 + 1) + (– 1 + 1)
= 1 + 0 + 0 + 0 + 0 + 0
= 1
APPEARS IN
संबंधित प्रश्न
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
Find the number of non-zero integral solutions of the equation `|1-i|^x = 2^x`.
Simplify the following and express in the form a + ib:
(2 + 3i)(1 – 4i)
Simplify the following and express in the form a + ib:
`5/2"i"(- 4 - 3 "i")`
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
`-sqrt(5) - sqrt(7)"i"`
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Evaluate : `("i"^37 + 1/"i"^67)`
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Answer the following:
Solve the following equation for x, y ∈ R:
(4 − 5i)x + (2 + 3i)y = 10 − 7i
Answer the following:
Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
Answer the following:
Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real
If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.
If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)
State true or false for the following:
Multiplication of a non-zero complex number by i rotates it through a right angle in the anti-clockwise direction.
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
If z = x + iy, then show that `z barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.
The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.
If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Show that `(-1 + sqrt3i)^3` is a real number.