हिंदी

Answer the following: show that ii(1+i2)8+(1-i2)8 = 2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2

योग

उत्तर

`((1 + "i")/sqrt(2))^2 = (1 + 2"i" + "i"^2)/2 = (1 + 2"i" - 1)/2` = i

∴ `((1 + "i")/sqrt(2))^8 = [((1 + "i")/sqrt(2))^2]^4` = i4 = 1 .......(i)

Also, `((1 - "i")/sqrt(2))^2 = (1 - 2"i" + "i"^2)/2 = (1 - 2"i" - 1)/2` = – i

∴ `((1 - "i")/sqrt(2))^8 = [((1 - "i")/sqrt(2))^2]^4`

= (– i)4 = (– 1)4 × (i)4

= 1 × i4

= 1 ........(ii)

Adding (i) and (ii), we get

`((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 1 + 1 = 2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Complex Numbers - Miscellaneous Exercise 1.2 [पृष्ठ २२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 1 Complex Numbers
Miscellaneous Exercise 1.2 | Q II.11 | पृष्ठ २२

संबंधित प्रश्न

If `x – iy = sqrt((a-ib)/(c - id))` prove that `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`


If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of i49 + i68 + i89 + i110 


Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`


Write the conjugates of the following complex number:

`-sqrt(5) - sqrt(7)"i"`


Write the conjugates of the following complex number:

5i


Write the conjugates of the following complex number:

`sqrt(5) - "i"`


Is (1 + i14 + i18 + i22) a real number? Justify your answer


Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16


If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)` 


Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real


Find the value of x and y which satisfy the following equation (x, y∈R).

`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i


Select the correct answer from the given alternatives:

If n is an odd positive integer then the value of 1 + (i)2n + (i)4n + (i)6n is :


Answer the following:

Simplify the following and express in the form a + ib:

`3 + sqrt(-64)`


Answer the following:

Simplify the following and express in the form a + ib:

`(4 + 3"i")/(1 - "i")`


Answer the following:

Simplify the following and express in the form a + ib:

`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`


Answer the following:

Evaluate: (1 − i + i2)−15 


Answer the following:

If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1


Answer the following:

Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real


Answer the following:

Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`


If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.


Locate the points for which 3 < |z| < 4.


The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.


What is the principal value of amplitude of 1 – i?


If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.


If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).


If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.


If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.


State True or False for the following:

The inequality |z – 4| < |z – 2| represents the region given by x > 3.


A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.


If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.


The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.


The complex number z = x + iy which satisfy the equation `|(z - 5i)/(z + 5i)|` = 1, lie on ______.


If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×