Advertisements
Advertisements
प्रश्न
If `x – iy = sqrt((a-ib)/(c - id))` prove that `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`
उत्तर
`x – iy = sqrt((a-ib)/(c - id))` ...... (1)
In place of i - on writing, i
`x – iy = sqrt((a-ib)/(c - id))`
On multiplying equations (1) and (2), we get
`(x - iy)(x + iy) = sqrt((a - ib)/(c - id)) xx sqrt((a + ib)/(c + id))`
= or `x^2 - i^2y^2 = sqrt((a^2 - i^2 b^2)/(c^2 - i^2 d^2))`
∴ `x^2 + y^2 = sqrt((a^2 + b^2)/(c^2 + d^2)`
On squaring both sides,
`(x^2 + y^2)^2 = (a^2 + b^2)/(c^2 + d^2)`
APPEARS IN
संबंधित प्रश्न
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
Simplify the following and express in the form a + ib:
(2i3)2
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
3 – i
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Find the value of i49 + i68 + i89 + i110
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20
Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Select the correct answer from the given alternatives:
`sqrt(-3) sqrt(-6)` is equal to
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Answer the following:
Solve the following equation for x, y ∈ R:
`(x + "i"y)/(2 + 3"i")` = 7 – i
Answer the following:
Evaluate: i131 + i49
The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______
If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)
Number of solutions of the equation z2 + |z|2 = 0 is ______.
For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`
If z = x + iy, then show that `z barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.
Find `|(1 + i) ((2 + i))/((3 + i))|`.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
`((1 + cosθ + isinθ)/(1 + cosθ - isinθ))^n` = ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
The complex number z = x + iy which satisfy the equation `|(z - 5i)/(z + 5i)|` = 1, lie on ______.
Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`
Find the value of `sqrt(-3) xx sqrt(-6)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`