हिंदी

Answer the following: Solve the following equation for x, y ∈ R: x+iy2+3i = 7 – i - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Solve the following equation for x, y ∈ R:

`(x + "i"y)/(2 + 3"i")` = 7 – i

योग

उत्तर

`(x + "i"y)/(2 + 3"i")` = 7 – i

∴ x + iy = (7 – i)(2 + 3i)

∴ x + iy = 14 + 21i – 2i – 3i2

∴ x + iy = 14 + 19i + 3    ...[∵ i2 = – 1]

∴ x + iy = 17 + 19i

Equating the real and imaginary parts separately, we get,

x = 17, y = 19

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Complex Numbers - Miscellaneous Exercise 1.2 [पृष्ठ २२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 1 Complex Numbers
Miscellaneous Exercise 1.2 | Q II. (2) (ii) | पृष्ठ २२

संबंधित प्रश्न

Find the value of i + i2 + i3 + i4 


Simplify the following and express in the form a + ib:

(2 + 3i)(1 – 4i)


Simplify the following and express in the form a + ib:

`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`


Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i


Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.


Write the conjugates of the following complex number:

`-sqrt(-5)`


Write the conjugates of the following complex number:

5i


Write the conjugates of the following complex number:

`sqrt(2) + sqrt(3)"i"`


Find the value of i + i2 + i3 + i4 


If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0


If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1


Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real


Find the value of x and y which satisfy the following equation (x, y ∈ R).

`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`


Find the value of x and y which satisfy the following equation (x, y∈R).

If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y


Answer the following:

Evaluate: (1 − i + i2)−15 


Answer the following:

Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`


If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.


Evaluate: (1 + i)6 + (1 – i)3 


The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.


State true or false for the following:

The complex number cosθ + isinθ can be zero for some θ.


What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?


What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?


1 + i2 + i4 + i6 + ... + i2n is ______.


The area of the triangle on the complex plane formed by the complex numbers z, –iz and z + iz is ______.


Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.


If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.


If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.


Multiplicative inverse of 1 + i is ______.


State True or False for the following:

The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).


Find `|(1 + i) ((2 + i))/((3 + i))|`.


The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.


If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.


If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.


Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.


If α, β, γ and a, b, c are complex numbers such that `α/a +  β/b + γ/c` = 1 + i and `a/α +  b/β + c/γ` = 0, then the value of `α^2/a^2 +  β^2/b^2 + γ^2/c^2` is equal to ______.


Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`


Show that `(-1 + sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×