Advertisements
Advertisements
प्रश्न
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
उत्तर
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
= `(3("i"^4*"i") + 2("i"^4*"i"^3) + ("i"^4)^2*"i")/("i"^4*"i"^2 + 2("i"^4)^2+ 3("i"^2)^9)`
= `(3(1)* "i" + 2(1)(- "i") + (1)^2 * "i")/((1)(-1) + 2(1)^2 + 3(-1)^9)` ...[∵ i2 = –1, i3 = – i, i4 = 1]
= `(3"i" - 2"i" + "i")/(-1 + 2 - 3)`
= `(2"i")/(-2)`
= – i
APPEARS IN
संबंधित प्रश्न
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.
Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
Simplify the following and express in the form a + ib:
`5/2"i"(- 4 - 3 "i")`
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Evaluate: `("i"^37 + 1/"i"^67)`
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
Select the correct answer from the given alternatives:
`sqrt(-3) sqrt(-6)` is equal to
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Answer the following:
Evaluate: (1 − i + i2)−15
If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
What is the reciprocal of `3 + sqrt(7)i`.
Number of solutions of the equation z2 + |z|2 = 0 is ______.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
The value of `(z + 3)(barz + 3)` is equivalent to ______.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
Simplify the following and express in the form a + ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`