Advertisements
Advertisements
प्रश्न
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
उत्तर
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
= `(5 + 7"i")[1/(4 + 3"i") + 1/(4 - 3"i")]`
= `(5 + 7"i") [(4 - 3"i" + 4 + 3"i")/((4 + 3"i")(4 - 3"i"))]`
= `(5 + 7"i") [8/(16 - 9"i"^2)]`
= `(5 + 7"i") [8/(16 - 9(-1))]` ...[∵ i2 = – 1]
= `(8(5 + 7"i"))/25`
= `(40 + 56"i")/25`
= `40/25 + 56/25"i"`
= `8/5 + 56/25"i"`.
APPEARS IN
संबंधित प्रश्न
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
Show that 1 + i10 + i20 + i30 is a real number.
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Write the conjugates of the following complex number:
3 + i
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Answer the following:
Evaluate: i131 + i49
Answer the following:
Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`
The value of (2 + i)3 × (2 – i)3 is ______.
If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.
State true or false for the following:
If n is a positive integer, then the value of in + (i)n+1 + (i)n+2 + (i)n+3 is 0.
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.
If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`