Advertisements
Advertisements
प्रश्न
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
उत्तर
The number `(1 - i)^3/(1 - i^2)` is equal to –2.
Explanation:
`(1 - i)^3/(1 - i^2) = (1 - i)^3/((1 - i)(1 + i + i^2))`
= `(1 - i)^2/((1 + i - 1))`
= `(1 + i^2 - 2i)/i`
= `(1 - 1 - 2i)/i`
= `(-2i)/i`
= –2
APPEARS IN
संबंधित प्रश्न
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
Find the value of i49 + i68 + i89 + i110
Find the value of i + i2 + i3 + i4
Simplify the following and express in the form a + ib:
(2 + 3i)(1 – 4i)
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
cosθ + i sinθ
Select the correct answer from the given alternatives:
If n is an odd positive integer then the value of 1 + (i)2n + (i)4n + (i)6n is :
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Select the correct answer from the given alternatives:
`sqrt(-3) sqrt(-6)` is equal to
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
The value of (2 + i)3 × (2 – i)3 is ______.
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
State true or false for the following:
The argument of the complex number z = `(1 + i sqrt(3))(1 + i)(cos theta + i sin theta)` is `(7pi)/12 + theta`.
State true or false for the following:
The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.
If `((1 + i)/(1 - i))^x` = 1, then ______.
Which of the following is correct for any two complex numbers z1 and z2?
A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`