Advertisements
Advertisements
प्रश्न
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
उत्तर
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
= `(("i" + 2))/"i".((3"i" + 4))/"i". 1/(5 + "i")`
= `(3"i"^2 + 4"i" + 6"i" + 8)/("i"^2(5 + "i"))`
= `(-3 + 10"i" + 8)/(-1(5 + "i"))` ...[∵ i2 = – 1]
= `((5 + 10"i"))/(-(5 + "i")`
= `((5 + 10"i")(5 - "i"))/(-(5 + "i")(5 - "i"))`
= `(25 - 5"i" + 50"i" - 10"i"^2)/(-(25 - "i"^2)`
= `(25 + 45"i" - 10(-1))/(-[25 - (-1)]`
= `(35 + 45"i")/(-26)`
= `(-35)/26 - 45/26"i"`
APPEARS IN
संबंधित प्रश्न
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
Simplify the following and express in the form a + ib:
(2i3)2
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Find the value of: x3 – 3x2 + 19x – 20, if x = 1 – 4i
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
3 – i
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a
Find the value of x and y which satisfy the following equation (x, y ∈ R).
`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Select the correct answer from the given alternatives:
`sqrt(-3) sqrt(-6)` is equal to
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Answer the following:
Simplify the following and express in the form a + ib:
(2i3)2
Answer the following:
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Answer the following:
Solve the following equation for x, y ∈ R:
(4 − 5i)x + (2 + 3i)y = 10 − 7i
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Answer the following:
Find the value of x3 + 2x2 − 3x + 21, if x = 1 + 2i
If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
State true or false for the following:
Multiplication of a non-zero complex number by i rotates it through a right angle in the anti-clockwise direction.
State true or false for the following:
The complex number cosθ + isinθ can be zero for some θ.
What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?
If z = x + iy, then show that `z barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.
Solve the equation |z| = z + 1 + 2i.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
State True or False for the following:
For any complex number z the minimum value of |z| + |z – 1| is 1.
Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.
If `((1 + i)/(1 - i))^x` = 1, then ______.
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.
If a + ib = c + id, then ______.
`((1 + cosθ + isinθ)/(1 + cosθ - isinθ))^n` = ______.
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`
Simplify the following and express in the form a+ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Show that `(-1 + sqrt3 i)^3` is a real number.
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`