हिंदी

What is the locus of z, if amplitude of z – 2 – 3i is π4? - Mathematics

Advertisements
Advertisements

प्रश्न

What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?

योग

उत्तर

Let z = x + iy.

Then z – 2 – 3i = (x – 2) + i(y – 3)

Let θ be the amplitude of z – 2 – 3i.

Then `tan theta = (y - 3)/(x - 2)`

⇒ `tan  pi/4 = (y - 3)/(x - 2)("since"  theta = pi/4)`

⇒ 1 = `(y - 3)/(x - 2)` i.e. x – y + 1 = 0,

Hence, the locus of z is a straight line.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Solved Examples [पृष्ठ ८८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Solved Examples | Q 26 | पृष्ठ ८८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the multiplicative inverse of the complex number.

`sqrt5 + 3i`


Find the multiplicative inverse of the complex number.

–i 


Find the number of non-zero integral solutions of the equation `|1-i|^x  = 2^x`.


Simplify the following and express in the form a + ib: 

(2i3)2 


Simplify the following and express in the form a + ib:

(2 + 3i)(1 – 4i)


Write the conjugates of the following complex number:

`-sqrt(-5)`


Write the conjugates of the following complex number:

`sqrt(2) + sqrt(3)"i"`


Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16


Find the value of x and y which satisfy the following equation (x, y∈R).

`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i


Answer the following:

Simplify the following and express in the form a + ib:

(2i3)2 


Answer the following:

Simplify the following and express in the form a + ib:

(1 + 3i)2(3 + i)


Answer the following:

Evaluate: (1 − i + i2)−15 


If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.


What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?


What is the principal value of amplitude of 1 – i?


If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.


The number `(1 - i)^3/(1 - i^2)` is equal to ______.


If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.


State True or False for the following:

The inequality |z – 4| < |z – 2| represents the region given by x > 3.


If a + ib = c + id, then ______.


The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.


If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.


`((1 + cosθ + isinθ)/(1 + cosθ - isinθ))^n` = ______.


Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.


The complex number z = x + iy which satisfy the equation `|(z - 5i)/(z + 5i)|` = 1, lie on ______.


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`


Evaluate the following:

i35


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×