हिंदी

The complex number z which satisfies the condition |i+zi-z| = 1 lies on ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.

विकल्प

  • Circle x2 + y2 = 1

  • The x-axis

  • The y-axis

  • The line x + y = 1.

MCQ
रिक्त स्थान भरें

उत्तर

The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on the x-axis.

Explanation:

Given that: `|(i + z)/(i - z)|` = 1

Let z = x + yi

∴ `|(i + x + yi)/(i - x - yi)|` = 1

⇒ `|(x + (y + 1)i)/(-x - (y - 1)i)|` = 1

⇒ `|x + (y + 1)i| = |-x - (y - 1)i|`

⇒ `sqrt(x^2 + (y + 1)^2) = sqrt(x^2 + (y - 1)^2)`

⇒ x2 + (y + 1)2 = x2 + (y – 1)2

⇒ (y + 1)2 = (y – 1)2

⇒ y2 + 2y + 1 = y2 – 2y + 1

⇒ 2y = –2y

⇒ 4y = 0

⇒ x-axis.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Exercise | Q 45 | पृष्ठ ९६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If `x – iy = sqrt((a-ib)/(c - id))` prove that `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`


Find the value of i + i2 + i3 + i4 


Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20


Show that 1 + i10 + i100 − i1000 = 0 


If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)` 


Select the correct answer from the given alternatives:

The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:


Answer the following:

Simplify the following and express in the form a + ib:

(2i3)2 


Answer the following:

Simplify the following and express in the form a + ib:

`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`


Answer the following:

Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`


The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.


If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.


What is the reciprocal of `3 + sqrt(7)i`.


The equation |z + 1 – i| = |z – 1 + i| represents a ______.


If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.


If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.


Find `|(1 + i) ((2 + i))/((3 + i))|`.


The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.


A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.


Let x, y ∈ R, then x + iy is a non-real complex number if ______.


If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.


If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.


If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.


The complex number z = x + iy which satisfy the equation `|(z - 5i)/(z + 5i)|` = 1, lie on ______.


If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Show that `(-1 + sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×