Advertisements
Advertisements
प्रश्न
The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.
पर्याय
Circle x2 + y2 = 1
The x-axis
The y-axis
The line x + y = 1.
उत्तर
The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on the x-axis.
Explanation:
Given that: `|(i + z)/(i - z)|` = 1
Let z = x + yi
∴ `|(i + x + yi)/(i - x - yi)|` = 1
⇒ `|(x + (y + 1)i)/(-x - (y - 1)i)|` = 1
⇒ `|x + (y + 1)i| = |-x - (y - 1)i|`
⇒ `sqrt(x^2 + (y + 1)^2) = sqrt(x^2 + (y - 1)^2)`
⇒ x2 + (y + 1)2 = x2 + (y – 1)2
⇒ (y + 1)2 = (y – 1)2
⇒ y2 + 2y + 1 = y2 – 2y + 1
⇒ 2y = –2y
⇒ 4y = 0
⇒ x-axis.
APPEARS IN
संबंधित प्रश्न
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
Simplify the following and express in the form a + ib:
(2 + 3i)(1 – 4i)
Find the value of: x3 – 3x2 + 19x – 20, if x = 1 – 4i
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
Is (1 + i14 + i18 + i22) a real number? Justify your answer
Find the value of x and y which satisfy the following equation (x, y∈R).
(x + 2y) + (2x − 3y)i + 4i = 5
Find the value of x and y which satisfy the following equation (x, y∈R).
`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i
Answer the following:
Simplify the following and express in the form a + ib:
(2 + 3i)(1 − 4i)
Answer the following:
Simplify the following and express in the form a + ib:
`5/2"i"(-4 - 3"i")`
Answer the following:
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Answer the following:
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Answer the following:
Evaluate: (1 − i + i2)−15
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
Answer the following:
Show that z = `((-1 + sqrt(-3))/2)^3` is a rational number
State true or false for the following:
The complex number cosθ + isinθ can be zero for some θ.
What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
Find `|(1 + i) ((2 + i))/((3 + i))|`.
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.
A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.
Show that `(-1 + sqrt3 i)^3` is a real number.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`