Advertisements
Advertisements
प्रश्न
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
उत्तर
`((1 + "i")/sqrt(2))^2 = (1 + 2"i" + "i"^2)/2 = (1 + 2"i" - 1)/2` = i
∴ `((1 + "i")/sqrt(2))^8 = [((1 + "i")/sqrt(2))^2]^4` = i4 = 1 .......(i)
Also, `((1 - "i")/sqrt(2))^2 = (1 - 2"i" + "i"^2)/2 = (1 - 2"i" - 1)/2` = – i
∴ `((1 - "i")/sqrt(2))^8 = [((1 - "i")/sqrt(2))^2]^4`
= (– i)4 = (– 1)4 × (i)4
= 1 × i4
= 1 ........(ii)
Adding (i) and (ii), we get
`((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 1 + 1 = 2
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number:
4 – 3i
Find the multiplicative inverse of the complex number.
–i
Find the value of i49 + i68 + i89 + i110
Simplify the following and express in the form a + ib:
(2 + 3i)(1 – 4i)
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Answer the following:
Evaluate: (1 − i + i2)−15
Answer the following:
Show that z = `((-1 + sqrt(-3))/2)^3` is a rational number
Answer the following:
Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is
Evaluate: (1 + i)6 + (1 – i)3
Locate the points for which 3 < |z| < 4.
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.
What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?
Number of solutions of the equation z2 + |z|2 = 0 is ______.
The value of `sqrt(-25) xx sqrt(-9)` is ______.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.
`((1 + cosθ + isinθ)/(1 + cosθ - isinθ))^n` = ______.
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.
If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.
Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Evaluate the following:
i35