मराठी

If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.

रिकाम्या जागा भरा

उत्तर

If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.

Explanation:

Given that (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy  .....(1)

⇒ `(bar(2 + i)) (bar(2 + 2i)) (bar(2 + 3i)) ... (bar(2 + ni)) = (bar(x + iy))` = (x – iy)

i.e., (2 – i) (2 – 2i) (2 – 3i) ... (2 – ni) = x – iy   ......(2)

Multiplying (1) and (2)

We get 5.8.13 ... (4 + n2) = x2 + y2.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Solved Examples [पृष्ठ ८४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Solved Examples | Q 16.(vii) | पृष्ठ ८४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Show that 1 + i10 + i20 + i30 is a real number.


Simplify the following and express in the form a + ib:

(2 + 3i)(1 – 4i)


Simplify the following and express in the form a + ib:

(1 + 3i)2 (3 + i)


Write the conjugates of the following complex number:

`-sqrt(5) - sqrt(7)"i"`


Write the conjugates of the following complex number:

`sqrt(5) - "i"`


Write the conjugates of the following complex number:

`sqrt(2) + sqrt(3)"i"`


Find the value of i49 + i68 + i89 + i110 


Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20


Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`


Find the value of x and y which satisfy the following equation (x, y∈R).

(x + 2y) + (2x − 3y)i + 4i = 5


Answer the following:

Simplify the following and express in the form a + ib:

(2i3)2 


Answer the following:

Evaluate: i131 + i49 


Answer the following:

Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`


If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.


Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.


What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?


If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.


If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.


If z = x + iy, then show that `z  barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.


Solve the equation |z| = z + 1 + 2i.


The number `(1 - i)^3/(1 - i^2)` is equal to ______.


State True or False for the following:

The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).


If a + ib = c + id, then ______.


The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.


The complex number z = x + iy which satisfy the equation `|(z - 5i)/(z + 5i)|` = 1, lie on ______.


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×