Advertisements
Advertisements
प्रश्न
If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.
उत्तर
If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.
Explanation:
Given that (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy .....(1)
⇒ `(bar(2 + i)) (bar(2 + 2i)) (bar(2 + 3i)) ... (bar(2 + ni)) = (bar(x + iy))` = (x – iy)
i.e., (2 – i) (2 – 2i) (2 – 3i) ... (2 – ni) = x – iy ......(2)
Multiplying (1) and (2)
We get 5.8.13 ... (4 + n2) = x2 + y2.
APPEARS IN
संबंधित प्रश्न
Show that 1 + i10 + i20 + i30 is a real number.
Simplify the following and express in the form a + ib:
(2 + 3i)(1 – 4i)
Simplify the following and express in the form a + ib:
(1 + 3i)2 (3 + i)
Write the conjugates of the following complex number:
`-sqrt(5) - sqrt(7)"i"`
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Find the value of i49 + i68 + i89 + i110
Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
Find the value of x and y which satisfy the following equation (x, y∈R).
(x + 2y) + (2x − 3y)i + 4i = 5
Answer the following:
Simplify the following and express in the form a + ib:
(2i3)2
Answer the following:
Evaluate: i131 + i49
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.
If z = x + iy, then show that `z barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.
Solve the equation |z| = z + 1 + 2i.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
If a + ib = c + id, then ______.
The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.
The complex number z = x + iy which satisfy the equation `|(z - 5i)/(z + 5i)|` = 1, lie on ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`