मराठी

What is the locus of z, if amplitude of z – 2 – 3i is π4? - Mathematics

Advertisements
Advertisements

प्रश्न

What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?

बेरीज

उत्तर

Let z = x + iy.

Then z – 2 – 3i = (x – 2) + i(y – 3)

Let θ be the amplitude of z – 2 – 3i.

Then `tan theta = (y - 3)/(x - 2)`

⇒ `tan  pi/4 = (y - 3)/(x - 2)("since"  theta = pi/4)`

⇒ 1 = `(y - 3)/(x - 2)` i.e. x – y + 1 = 0,

Hence, the locus of z is a straight line.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Solved Examples [पृष्ठ ८८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Solved Examples | Q 26 | पृष्ठ ८८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the multiplicative inverse of the complex number.

`sqrt5 + 3i`


Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.


Find the value of: x3 –  x2 + x + 46, if x = 2 + 3i


Simplify the following and express in the form a + ib:

`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`


Write the conjugates of the following complex number:

3 – i


Write the conjugates of the following complex number:

5i


Is (1 + i14 + i18 + i22) a real number? Justify your answer


If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a


If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)


If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1


Answer the following:

Simplify the following and express in the form a + ib:

(2 + 3i)(1 − 4i)


Answer the following:

Solve the following equation for x, y ∈ R:

`(x + "i"y)/(2 + 3"i")` = 7 – i


Solve the following equation for x, y ∈ R:

2x + i9y (2 + i) = xi7 + 10i16


The value of (2 + i)3 × (2 – i)3 is ______.


State true or false for the following:

Multiplication of a non-zero complex number by i rotates it through a right angle in the anti-clockwise direction.


State true or false for the following:

The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.


State true or false for the following:

If n is a positive integer, then the value of in + (i)n+1 + (i)n+2 + (i)n+3 is 0.


If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.


If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.


If |z + 1| = z + 2(1 + i), then find z.


If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.


Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.


If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.


If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.


Find `|(1 + i) ((2 + i))/((3 + i))|`.


A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.


The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.


Show that `(-1 + sqrt3 i)^3` is a real number.


Show that `(-1 + sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×