मराठी

If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.

रिकाम्या जागा भरा

उत्तर

If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are 6 and 0.

Explanation:

Given that: |z + 4| ≤ 3

For the greatest value of |z + 1|.

= |z + 4 – 3| ≤ |z + 4| + |–3|

= |z + 4 – 3| ≤ 3 + 3  ......[∵ |z + 4| ≤ 3 and |–3| = 3]

= |z + 4 – 3| ≤ 6

Hence, the greatest value of |z + 1| is 6 and for the least value of |z + 1| = 0.  .....[∵ The least value of the modulus of complex number is 0.]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Exercise | Q 25.(viii) | पृष्ठ ९३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the multiplicative inverse of the complex number.

`sqrt5 + 3i`


If `x – iy = sqrt((a-ib)/(c - id))` prove that `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`


Simplify the following and express in the form a + ib:

`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`


Find the value of i49 + i68 + i89 + i110 


Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`


Evaluate: `("i"^37 + 1/"i"^67)`


If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a


If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)


Answer the following:

Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`


Answer the following:

Simplify: `("i"^65 + 1/"i"^145)`


Locate the points for which 3 < |z| < 4.


What is the principal value of amplitude of 1 – i?


Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.


If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).


If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.


If |z + 1| = z + 2(1 + i), then find z.


If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.


State True or False for the following:

Multiplication of a non-zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.


State True or False for the following:

The inequality |z – 4| < |z – 2| represents the region given by x > 3.


Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.


The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.


If a + ib = c + id, then ______.


If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.


If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.


If α, β, γ and a, b, c are complex numbers such that `α/a +  β/b + γ/c` = 1 + i and `a/α +  b/β + c/γ` = 0, then the value of `α^2/a^2 +  β^2/b^2 + γ^2/c^2` is equal to ______.


Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.


Evaluate the following:

i35


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×