Advertisements
Advertisements
प्रश्न
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
उत्तर
Multiplicative inverse of `sqrt5 + 3i`
= `1/(sqrt5 + 3i) = 1/(sqrt5 + 3i) xx (sqrt5 - 3i)/ (sqrt5 - 3i)`
= `(sqrt5 - 3i)/(5 - 9i^2)`
= `(sqrt5 - 3i)/(5 +9)`
= `(sqrt(5) - 3i)/14`
= `sqrt5/14 - 3/14 i`
संबंधित प्रश्न
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
Find the value of i + i2 + i3 + i4
Simplify the following and express in the form a + ib:
(2i3)2
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
3 – i
Write the conjugates of the following complex number:
`-sqrt(5) - sqrt(7)"i"`
Write the conjugates of the following complex number:
5i
Find the value of i49 + i68 + i89 + i110
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Answer the following:
Solve the following equation for x, y ∈ R:
`(x + "i"y)/(2 + 3"i")` = 7 – i
Answer the following:
Evaluate: i131 + i49
Answer the following:
Simplify: `("i"^65 + 1/"i"^145)`
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
State true or false for the following:
Multiplication of a non-zero complex number by i rotates it through a right angle in the anti-clockwise direction.
If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).
If |z + 1| = z + 2(1 + i), then find z.
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.
State True or False for the following:
Multiplication of a non-zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.
State True or False for the following:
For any complex number z the minimum value of |z| + |z – 1| is 1.
State True or False for the following:
The inequality |z – 4| < |z – 2| represents the region given by x > 3.
If `((1 + i)/(1 - i))^x` = 1, then ______.
If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.
`((1 + cosθ + isinθ)/(1 + cosθ - isinθ))^n` = ______.
The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.
Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.