Advertisements
Advertisements
प्रश्न
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
उत्तर
`|(beta - alpha)/(1 - baralpha beta)|^2`
= `((beta - alpha)/(1 - baralpha beta))bar(((beta - alpha)/(1 - baralpha beta))`
= `(beta - alpha)/(1 - baralpha beta) xx (barbeta - baralpha)/(1 - baralpha beta)`
= `(beta barbeta - baralphabeta - alpha barbeta + alpha baralpha)/(1 - alpha barbeta - baralphabeta +alphabaralpha.betabarbeta)`
= `(|beta|^2 - baralphabeta - alphabarbeta + |alpha|^2)/(1 - alphabarbeta - baralphabeta + |alpha|^2 . |beta|^2`)`
Given |β| = 1,
= `(1 + |alpha|^2 - baralphabeta - alphabarbeta)/(1 + |alpha|^2 - baralphabeta - alphabarbeta)`
= 1
∴ `|(beta - alpha)/(1 - baralphabeta)| = 1` or `|(beta - alpha)/(1 - baralphabeta)| = 1`
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
If `((1+i)/(1-i))^m` = 1, then find the least positive integral value of m.
Find the value of i49 + i68 + i89 + i110
Simplify the following and express in the form a + ib:
(2i3)2
Simplify the following and express in the form a + ib:
`5/2"i"(- 4 - 3 "i")`
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Find the value of i + i2 + i3 + i4
Evaluate : `("i"^37 + 1/"i"^67)`
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.
What is the reciprocal of `3 + sqrt(7)i`.
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`
Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
Multiplicative inverse of 1 + i is ______.
State True or False for the following:
For any complex number z the minimum value of |z| + |z – 1| is 1.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
Find `|(1 + i) ((2 + i))/((3 + i))|`.
If `((1 + i)/(1 - i))^x` = 1, then ______.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
If z is a complex number, then ______.
If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.
The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Show that `(-1 + sqrt3i)^3` is a real number.