Advertisements
Advertisements
प्रश्न
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
उत्तर
L.H.S. = `|1 - barz_1z_2|^2 - |z_1 - z_2|^2`
= `(1 - barz_1z_2) (bar(1 - barz_1 z_2)) - (z_1 - z_2) (bar(z_1 - z_2))`
= `(1 - barz_1 z_2) (1 - z_1 barz_2) - (z_1 - z_2)(barz_1 - barz_2)`
= `1 + z_1 barz_1 z_2barz_2 - z_1barz_1 - z_2barz_2`
= `1 + |z-1|^2 * |z_2|^2 - |z_1|^2 - |z_2|^2`
= `(1 - |z_1|^2)(1 - |z_2|^2)`
R.H.S. = `k(1 - |z_1|^2)(1 - |z_2|^2)`
⇒ k = 1
Hence, equating L.H.S. and R.H.S., we get k = 1.
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number:
4 – 3i
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
Find the value of i49 + i68 + i89 + i110
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Simplify the following and express in the form a + ib:
(2 + 3i)(1 – 4i)
Write the conjugates of the following complex number:
3 – i
Write the conjugates of the following complex number:
5i
Find the value of i49 + i68 + i89 + i110
Find the value of x and y which satisfy the following equation (x, y∈R).
(x + 2y) + (2x − 3y)i + 4i = 5
Find the value of x and y which satisfy the following equation (x, y∈R).
`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i
Find the value of x and y which satisfy the following equation (x, y ∈ R).
`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Answer the following:
Simplify the following and express in the form a + ib:
(2 + 3i)(1 − 4i)
Answer the following:
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Solve the following equation for x, y ∈ R:
2x + i9y (2 + i) = xi7 + 10i16
Answer the following:
Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
Answer the following:
Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.
The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.
Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.
Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`