Advertisements
Advertisements
प्रश्न
Find the value of x and y which satisfy the following equation (x, y ∈ R).
`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`
उत्तर
`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`
∴ `((x + "i"y)(2 - 3"i") + (2 + "i")(2 + 3"i"))/((2 + 3"i")(2 - 3"i")) = 9/13(1 + "i")`
∴ `(2x - 3"i"x + 2"i"y - 3y"i"^2 + 4 + 6"i" + 2"i" + 3"i"^2)/(4 - 9"i"^2) = 9/13(1 + "i")`
∴ `(2x - 3"i"x + 2"i"y + 3y + 4 + 6"i" + 2"i" - 3)/(4 + 9) = 9/13(1 + "i")` ...[∵ i2 = – 1]
∴ `((2x + 3y + 1) + (-3"i"x + 2"i"y + 8"i"))/13 = 9/13(1 + "i")`
Equating the real and imaginary parts separately, we get,
2x + 3y + 1 = 9 and – 3x + 2y + 8 = 9
∴ 2x + 3y = 8 ...(1)
and – 3x + 2y = 1 ...(2)
Multiplying equation (1) by 3 and equation (2) by 2, we get,
6x + 9y = 24
and – 6x + 4y = 2
On adding, we get,
13y = 26
∴ y = 2
∴ from (1), 2x + 3(2) = 8
∴ 2x + 6 = 8
∴ 2x = 2
∴ x = 1
Hence, x = 1 and y = 2
APPEARS IN
संबंधित प्रश्न
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
Simplify the following and express in the form a + ib:
(2 + 3i)(1 – 4i)
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
`-sqrt(5) - sqrt(7)"i"`
Write the conjugates of the following complex number:
`-sqrt(-5)`
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Find the value of i49 + i68 + i89 + i110
Evaluate: `("i"^37 + 1/"i"^67)`
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i
Answer the following:
Simplify: `("i"^65 + 1/"i"^145)`
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.
State true or false for the following:
The argument of the complex number z = `(1 + i sqrt(3))(1 + i)(cos theta + i sin theta)` is `(7pi)/12 + theta`.
What is the principal value of amplitude of 1 – i?
What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?
For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`
If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.
If |z + 1| = z + 2(1 + i), then find z.
Multiplicative inverse of 1 + i is ______.
If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.
The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.
If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.
If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.
The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.
If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Evaluate the following:
i35