Advertisements
Advertisements
प्रश्न
State true or false for the following:
The argument of the complex number z = `(1 + i sqrt(3))(1 + i)(cos theta + i sin theta)` is `(7pi)/12 + theta`.
पर्याय
True
False
उत्तर
This statement is True.
Explanation:
arg(z) = arg`(1 + i sqrt(3))` + arg(1 + i) + arg(cosθ + isinθ)
`pi/3 + pi/4 + theta`
= `(7pi)/12 + theta`
APPEARS IN
संबंधित प्रश्न
If `x – iy = sqrt((a-ib)/(c - id))` prove that `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Write the conjugates of the following complex number:
3 – i
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
State true or false for the following:
The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.
What is the reciprocal of `3 + sqrt(7)i`.
What is the principal value of amplitude of 1 – i?
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
Simplify the following and express in the form a + ib.
`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`