Advertisements
Advertisements
प्रश्न
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.
उत्तर
(a + ib) (c + id) (e + if)(g + ih) = A + iB ......(1)
By placing i in place of i,
(a – ib) (c – id) (e – if)(g – ih) = A – iB ......(2)
On multiplying equations (1) and (2),
[(a + ib) (a – ib)] [(c + id) (c – id)] [(e + if)(e – if)][(g + ih)(g – ih)] = (A + iB)(A – iB)
⇒ `(a^2 - i^2b^2)(c^2 - i^2d^2)(e^2 - i^2 f^2)(g^2 - i^2h^2) = A^2 - i^2B^2`
⇒ `(a^2 + b^2)(c^2 + d^2) (e^2 + f^2) (g^2 + h^2) = A^2 + B^2`
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
Find the multiplicative inverse of the complex number.
–i
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
Find the value of i49 + i68 + i89 + i110
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Simplify the following and express in the form a + ib:
(1 + 3i)2 (3 + i)
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20
If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
Answer the following:
Simplify the following and express in the form a + ib:
(2i3)2
Answer the following:
Find the value of x3 + 2x2 − 3x + 21, if x = 1 + 2i
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
Answer the following:
Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`
Answer the following:
Simplify: `("i"^65 + 1/"i"^145)`
Answer the following:
Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is
If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.
If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)
What is the principal value of amplitude of 1 – i?
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
The area of the triangle on the complex plane formed by the complex numbers z, –iz and z + iz is ______.
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
Number of solutions of the equation z2 + |z|2 = 0 is ______.
For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`
If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).
Solve the equation |z| = z + 1 + 2i.
If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.
State True or False for the following:
For any complex number z the minimum value of |z| + |z – 1| is 1.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
If `((1 + i)/(1 - i))^x` = 1, then ______.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
The complex number z = x + iy which satisfy the equation `|(z - 5i)/(z + 5i)|` = 1, lie on ______.
Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.
Simplify the following and express in the form a + ib.
`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`