Advertisements
Advertisements
प्रश्न
If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)
उत्तर
`(x + iy)^(1/3)` = a + ib
⇒ x + iy = (a + ib)3
i.e., x + iy = a3 + i3 b3 + 3iab (a + ib)
= a3 – ib3 + i3a2b – 3ab2
= a3 – 3ab2 + i(3a2b – b3)
⇒ x = a3 – 3ab2 and y = 3a2b – b3
Thus `x/a = a^2 - 3b^2` and `y/b = 3a^2 - b^2`
So, `x/a - y/b = a^2 - 3b^2 + b^2`
= `-2a^2 - 2b^2`
= –2(a2 + b2)
APPEARS IN
संबंधित प्रश्न
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
If `x – iy = sqrt((a-ib)/(c - id))` prove that `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.
If `((1+i)/(1-i))^m` = 1, then find the least positive integral value of m.
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Simplify the following and express in the form a + ib:
(2i3)2
Show that 1 + i10 + i100 − i1000 = 0
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Solve the following equation for x, y ∈ R:
2x + i9y (2 + i) = xi7 + 10i16
Answer the following:
Evaluate: i131 + i49
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
Answer the following:
Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
Locate the points for which 3 < |z| < 4.
The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.
If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.
What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
Which of the following is correct for any two complex numbers z1 and z2?
If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`
Find the value of `sqrt(-3) xx sqrt(-6)`
Simplify the following and express in the form a + ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`