Advertisements
Advertisements
प्रश्न
Solve the equation `z^2 = barz`, where z = x + iy.
उत्तर
`z^2 = barz`
⇒ x2 – y2 + i2xy = x – iy
Therefore, x2 – y2 = x ......(1)
And 2xy = –y ......(2)
From (2), we have y = 0 or x = `- 1/2`
When y = 0, from (1)
We get x2 – x = 0
i.e., x = 0 or x = 1.
When x = `-1/2`, from (1)
We get y2 = `1/4 + 1/2` or y2 = `3/4`.
i.e., y2 = `+- sqrt(3)/2`
Hence, the solutions of the given equation are 0 + i0, 1 + i0, `-1/2 +i sqrt(3)/2`, `-1/2 -i sqrt(3)/2`
APPEARS IN
संबंधित प्रश्न
Find the modulus of `(1+i)/(1-i) - (1-i)/(1+i)`
Find the conjugate of the following complex number:
4 − 5 i
Find the conjugate of the following complex number:
\[\frac{1}{1 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - i )^2}{2 + i}\]
Find the conjugate of the following complex number:
\[\frac{(1 + i)(2 + i)}{3 + i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
1 + i
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\sqrt{3} + i\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 - i}{1 + i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1}{1 + i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 + 2i}{1 - 3i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{- 16}{1 + i\sqrt{3}}\]
If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=
If \[\frac{( a^2 + 1 )^2}{2a - i} = x + iy, \text { then } x^2 + y^2\] is equal to
If \[x + iy = (1 + i)(1 + 2i)(1 + 3i)\],then x2 + y2 =
If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.
If a complex number lies in the third quadrant, then its conjugate lies in the ______.
If z1 = `sqrt(3) + i sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.
What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.
Solve the system of equations Re(z2) = 0, z = 2.
State True or False for the following:
If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.
What is the conjugate of `(2 - i)/(1 - 2i)^2`?
sinx + icos2x and cosx – isin2x are conjugate to each other for ______.
If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______.