मराठी

Solve the equation z2=z¯, where z = x + iy. - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the equation `z^2 = barz`, where z = x + iy.

बेरीज

उत्तर

`z^2 = barz`

⇒ x– y2 + i2xy = x – iy

Therefore, x2 – y2 = x  ......(1)

And 2xy = –y  ......(2)

From (2), we have y = 0 or x = `- 1/2`

When y = 0, from (1)

We get x2 – x = 0

i.e., x = 0 or x = 1.

When x = `-1/2`, from (1)

We get y2 = `1/4 + 1/2` or y2 = `3/4`.

i.e., y2 = `+- sqrt(3)/2`

Hence, the solutions of the given equation are 0 + i0, 1 + i0, `-1/2 +i sqrt(3)/2`, `-1/2 -i sqrt(3)/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Solved Examples [पृष्ठ ७८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Solved Examples | Q 3 | पृष्ठ ७८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the modulus  of  `(1+i)/(1-i) - (1-i)/(1+i)`


Find the conjugate of the following complex number:

4 − 5 i


Find the conjugate of the following complex number:

\[\frac{1}{1 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - i )^2}{2 + i}\]


Find the conjugate of the following complex number:

\[\frac{(1 + i)(2 + i)}{3 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

1 + i


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\sqrt{3} + i\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 - i}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 + 2i}{1 - 3i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

 \[\frac{- 16}{1 + i\sqrt{3}}\]


If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=


If \[\frac{( a^2 + 1 )^2}{2a - i} = x + iy, \text { then } x^2 + y^2\] is equal to


If \[x + iy = (1 + i)(1 + 2i)(1 + 3i)\],then x2 + y2 =


If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.


If a complex number lies in the third quadrant, then its conjugate lies in the ______.


If z1 = `sqrt(3) + i  sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.


What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?


If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.


Solve the system of equations Re(z2) = 0, z = 2.


State True or False for the following:

If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.


What is the conjugate of `(2 - i)/(1 - 2i)^2`?


sinx + icos2x and cosx – isin2x are conjugate to each other for ______.


If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×