मराठी

If ( a 2 + 1 ) 2 2 a − I = X + I Y , Then X 2 + Y 2 is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\frac{( a^2 + 1 )^2}{2a - i} = x + iy, \text { then } x^2 + y^2\] is equal to

पर्याय

  • \[\frac{( a^2 + 1 )^4}{4 a^2 + 1}\]

  • \[\frac{(a + 1 )^2}{4 a^2 + 1}\]

  • \[\frac{( a^2 - 1 )^2}{(4 a^2 - 1 )^2}\]

  • none of these

MCQ

उत्तर

\[\frac{( a^2 + 1 )^4}{4 a^2 + 1}\]

\[x + iy = \frac{\left( a^2 + 1 \right)^2}{2a - i}\]

Taking modulus on both the sides, we get:

`sqrt(x^2 +y^2) = ((a^2+1)^2)/(sqrt(4a^2+1))`

\[\text { Squaring both sides, we get,} \]

\[ x^2 + y^2 = \frac{\left( a^2 + 1 \right)^4}{4 a^2 + 1}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.6 | Q 11 | पृष्ठ ६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`

 

Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.


Find the modulus  of  `(1+i)/(1-i) - (1-i)/(1+i)`


If (x + iy)3 = u + iv, then show that `u/x + v/y  =4(x^2 - y^2)`


Find the conjugate of the following complex number:

\[\frac{(3 - i )^2}{2 + i}\]


Find the conjugate of the following complex number:

\[\frac{(1 + i)(2 + i)}{3 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]


Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].


Find the modulus and argument of the following complex number and hence express in the polar form:

1 + i


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\sqrt{3} + i\]


Find the modulus and argument of the following complex number and hence express in the polar form:

1 − i


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 - i}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 + 2i}{1 - 3i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

 sin 120° - i cos 120° 


Find the modulus and argument of the following complex number and hence express in the polar form:

 \[\frac{- 16}{1 + i\sqrt{3}}\]


Write the conjugate of \[\frac{2 - i}{\left( 1 - 2i \right)^2}\] .


If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.


If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=


Solve the equation `z^2 = barz`, where z = x + iy.


If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.


The conjugate of the complex number `(1 - i)/(1 + i)` is ______.


If a complex number lies in the third quadrant, then its conjugate lies in the ______.


What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?


State True or False for the following:

If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.


If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?


sinx + icos2x and cosx – isin2x are conjugate to each other for ______.


If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×