मराठी

If (1 + I) (1 + 2i) (1 + 3i) .... (1 + Ni) = a + Ib, Then 2.5.10.17.......(1+N2)= - Mathematics

Advertisements
Advertisements

प्रश्न

If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=

पर्याय

  • a − ib

  • a2 − b2

  • a2 + b2

  • none of these

MCQ

उत्तर

a2 + b2

(1 + i)(1 + 2i)(1 + 3i) ......(1 + ni) = a + ib

Taking modulus on both the sides, we get,

\[\left| \left( 1 + i \right)\left( 1 + 2i \right)\left( 1 + 3i \right) . . . . . . \left( 1 + ni \right) \right| = a + ib\]

\[\left| \left( 1 + i \right)\left( 1 + 2i \right)\left( 1 + 3i \right) . . . . . . \left( 1 + ni \right) \right| \text { can be wriiten as } \left| \left( 1 + i \right) \right| \left| \left( 1 + 2i \right) \right| \left| \left( 1 + 3i \right) \right| . . . . \left| \left( 1 + ni \right) \right|\]

\[ \therefore \sqrt{1^2 + 1^2} \times \sqrt{1^2 + 2^2} \times \sqrt{1^2 + 3^2} . . . . \times \sqrt{1^2 + n^2} = \sqrt{a^2 + b^2}\]

\[\Rightarrow \sqrt{2} \times \sqrt{5} \times \sqrt{10} . . . . \times \sqrt{1 + n^2} = \sqrt{a^2 + b^2}\]

Squaring on both the sides, we get:

\[2 \times 5 \times 10 . . . . \times (1 + n^2 ) = a^2 + b^2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Complex Numbers - Exercise 13.6 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 13 Complex Numbers
Exercise 13.6 | Q 10 | पृष्ठ ६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.


Find the modulus  of  `(1+i)/(1-i) - (1-i)/(1+i)`


Find the conjugate of the following complex number:

4 − 5 i


Find the conjugate of the following complex number:

\[\frac{(1 + i)(2 + i)}{3 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]


Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].


Find the modulus and argument of the following complex number and hence express in the polar form:

1 − i


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 - i}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 + 2i}{1 - 3i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

 sin 120° - i cos 120° 


Find the modulus and argument of the following complex number and hence express in the polar form:

 \[\frac{- 16}{1 + i\sqrt{3}}\]


Write the conjugate of \[\frac{2 - i}{\left( 1 - 2i \right)^2}\] .


If (1+i)(1 + 2i)(1+3i)..... (1+ ni) = a+ib,then 2 ×5 ×10 ×...... ×(1+n2) is equal to.


If \[\frac{( a^2 + 1 )^2}{2a - i} = x + iy, \text { then } x^2 + y^2\] is equal to


If \[x + iy = (1 + i)(1 + 2i)(1 + 3i)\],then x2 + y2 =


If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]


Solve the equation `z^2 = barz`, where z = x + iy.


If |z2 – 1| = |z|2 + 1, then show that z lies on imaginary axis.


If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.


If a complex number lies in the third quadrant, then its conjugate lies in the ______.


If z1 = `sqrt(3) + i  sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.


If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.


Solve the system of equations Re(z2) = 0, z = 2.


State True or False for the following:

If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.


If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×