Advertisements
Advertisements
Question
If (1 + i) (1 + 2i) (1 + 3i) .... (1 + ni) = a + ib, then 2.5.10.17.......(1+n2)=
Options
a − ib
a2 − b2
a2 + b2
none of these
Solution
a2 + b2
(1 + i)(1 + 2i)(1 + 3i) ......(1 + ni) = a + ib
Taking modulus on both the sides, we get,
\[\left| \left( 1 + i \right)\left( 1 + 2i \right)\left( 1 + 3i \right) . . . . . . \left( 1 + ni \right) \right| = a + ib\]
\[\left| \left( 1 + i \right)\left( 1 + 2i \right)\left( 1 + 3i \right) . . . . . . \left( 1 + ni \right) \right| \text { can be wriiten as } \left| \left( 1 + i \right) \right| \left| \left( 1 + 2i \right) \right| \left| \left( 1 + 3i \right) \right| . . . . \left| \left( 1 + ni \right) \right|\]
\[ \therefore \sqrt{1^2 + 1^2} \times \sqrt{1^2 + 2^2} \times \sqrt{1^2 + 3^2} . . . . \times \sqrt{1^2 + n^2} = \sqrt{a^2 + b^2}\]
\[\Rightarrow \sqrt{2} \times \sqrt{5} \times \sqrt{10} . . . . \times \sqrt{1 + n^2} = \sqrt{a^2 + b^2}\]
Squaring on both the sides, we get:
\[2 \times 5 \times 10 . . . . \times (1 + n^2 ) = a^2 + b^2\]
APPEARS IN
RELATED QUESTIONS
Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`
Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.
Find the conjugate of the following complex number:
4 − 5 i
Find the conjugate of the following complex number:
\[\frac{1}{3 + 5i}\]
Find the conjugate of the following complex number:
\[\frac{1}{1 + i}\]
Find the conjugate of the following complex number:
\[\frac{(1 + i)(2 + i)}{3 + i}\]
Find the conjugate of the following complex number:
\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
1 + i
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\sqrt{3} + i\]
Find the modulus and argument of the following complex number and hence express in the polar form:
1 − i
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1 - i}{1 + i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{1}{1 + i}\]
Find the modulus and argument of the following complex number and hence express in the polar form:
\[\frac{- 16}{1 + i\sqrt{3}}\]
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].
Write the conjugate of \[\frac{2 - i}{\left( 1 - 2i \right)^2}\] .
If \[\frac{( a^2 + 1 )^2}{2a - i} = x + iy, \text { then } x^2 + y^2\] is equal to
If \[x + iy = (1 + i)(1 + 2i)(1 + 3i)\],then x2 + y2 =
If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]
Solve the equation `z^2 = barz`, where z = x + iy.
If |z2 – 1| = |z|2 + 1, then show that z lies on imaginary axis.
If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.
The conjugate of the complex number `(1 - i)/(1 + i)` is ______.
What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?
State True or False for the following:
If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.
What is the conjugate of `(2 - i)/(1 - 2i)^2`?
If `(a^2 + 1)^2/(2a - i)` = x + iy, what is the value of x2 + y2?
If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______.