English

If X + I Y = ( 1 + I ) ( 1 + 2 I ) ( 1 + 3 I ) ,Then X2 + Y2 = - Mathematics

Advertisements
Advertisements

Question

If \[x + iy = (1 + i)(1 + 2i)(1 + 3i)\],then x2 + y2 =

Options

  • 0

  • 1

  • 100

  • none of these

MCQ

Solution

100

\[\because x + iy = (1 + i)(1 + 2i)(1 + 3i)\]

\[\text { Taking modulus on both the sides }: \]

\[\left| x + iy \right| = \left| (1 + i)(1 + 2i)(1 + 3i) \right|\]

\[ \Rightarrow \left| x + iy \right| = \left| 1 + i \right| \times \left| 1 + 2i \right| \times \left| 1 + 3i \right|\]

\[ \Rightarrow \sqrt{x^2 + y^2} = \sqrt{1^2 + 1^2}\sqrt{1^2 + 2^2}\sqrt{1^2 + 3^2}\]

\[ \Rightarrow \sqrt{x^2 + y^2} = \sqrt{2}\sqrt{5}\sqrt{10} \]

\[ \Rightarrow \sqrt{x^2 + y^2} = \sqrt{100}\]

\[\text { Squaring both the sides }, \]

\[ \Rightarrow x^2 + y^2 = 100\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Complex Numbers - Exercise 13.6 [Page 65]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 13 Complex Numbers
Exercise 13.6 | Q 24 | Page 65

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the modulus  of  `(1+i)/(1-i) - (1-i)/(1+i)`


Find the conjugate of the following complex number:

4 − 5 i


Find the conjugate of the following complex number:

\[\frac{1}{1 + i}\]


Find the conjugate of the following complex number:

\[\frac{(3 - 2i)(2 + 3i)}{(1 + 2i)(2 - i)}\]


Find the modulus of \[\frac{1 + i}{1 - i} - \frac{1 - i}{1 + i}\].


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\sqrt{3} + i\]


Find the modulus and argument of the following complex number and hence express in the polar form:

1 − i


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 - i}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1}{1 + i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

\[\frac{1 + 2i}{1 - 3i}\]


Find the modulus and argument of the following complex number and hence express in the polar form:

 \[\frac{- 16}{1 + i\sqrt{3}}\]


If z1z2 and z3z4 are two pairs of conjugate complex numbers, prove that \[\arg\left( \frac{z_1}{z_4} \right) + \arg\left( \frac{z_2}{z_3} \right) = 0\].


Write the conjugate of \[\frac{2 - i}{\left( 1 - 2i \right)^2}\] .


If \[\frac{1 - ix}{1 + ix} = a + ib\] then \[a^2 + b^2\]


Solve the equation `z^2 = barz`, where z = x + iy.


If a complex number z lies in the interior or on the boundary of a circle of radius 3 units and centre (–4, 0), find the greatest and least values of |z + 1|.


The conjugate of the complex number `(1 - i)/(1 + i)` is ______.


If a complex number lies in the third quadrant, then its conjugate lies in the ______.


If z1 = `sqrt(3) + i  sqrt(3)` and z2 = `sqrt(3) + i`, then find the quadrant in which `(z_1/z_2)` lies.


What is the conjugate of `(sqrt(5 + 12i) + sqrt(5 - 12i))/(sqrt(5 + 12i) - sqrt(5 - 12i))`?


If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg`(z_1/z_4)` + arg`(z_2/z_3)`.


Solve the system of equations Re(z2) = 0, z = 2.


State True or False for the following:

If z is a complex number such that z ≠ 0 and Re(z) = 0, then Im(z2) = 0.


If z = x + iy lies in the third quadrant, then `barz/z` also lies in the third quadrant if ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×